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MATH3060 Mathematical Analysis III

Selected Solution to the Mid-Term Examination

Answer all five questions.

1. (25 points) Find the Fourier series of the function f(x) = |x| (extended as a 2π-

periodic function). Discuss its convergence.

2. (15 points) Let f be a continuous function on (−∞,∞) which vanishes outside

[−1, 1]. Define the function Φ(x, y) by

Φ(x, y) =
1

π

∫ ∞
−∞

y

(x− t)2 + y2
f(t) dt , ∀(x, y), y > 0 .

Show that

lim
y→0+

Φ(x, y) = f(x) .

Solution. Using the formula ∫ ∞
0

1

1 + z2
dz =

π

2
,

one shows that
1

π

∫ ∞
−∞

y

(x− t)2 + y2
dt = 1 .

It follows that

Φ(x, y)− f(x) =
1

π

∫ ∞
−∞

y

(x− t)2 + y2
(f(t)− f(x)) dt .

For a fixed x, by the continuity of f , for ε > 0, there is some δ0 such that |f(t)−
f(x)| < ε/2 for all t, |t− x| < δ0. Therefore,∣∣∣∣ 1π

∫ x+δ0

x−δ0

y

(x− t)2 + y2
(f(t)− f(x)) dt

∣∣∣∣ ≤ ε

2
. (1)



On the other hand, for t ∈ (−∞, x−δ0]∪ [x+δ0,∞) we have (x− t)2 ≥ δ20. Letting

M = sup |f |, we have∣∣∣∣ 1π
∫ ∞
x+δ0

y

(x− t)2 + y2
(f(t)− f(x)) dt

∣∣∣∣ ≤ 2My

π

∫ ∞
x+δ0

1

(x− t)2 + y2
dt

≤ 2My

π

∫ ∞
x+δ0

1

(x− t)2
dt

=
2My

π

∫ ∞
δ0

1

z2
dz

=
2M

πδ0
y .

Similarly, we have∣∣∣∣ 1π
∫ x−δ0

−∞

y

(x− t)2 + y2
(f(t)− f(x)) dt

∣∣∣∣ ≤ 2M

πδ0
y .

Now, taking δ <
πδ0
8M

, then

∣∣∣∣ 1π
(∫ x−δ0

−∞
+

∫ ∞
x+δ0

)
y

(x− t)2 + y2
(f(t)− f(x)) dt

∣∣∣∣ < ε

2
, (2)

for all y, 0 < y < δ. The desired result follows from combining (1) and (2).

Note. Similar ideas were used in the proof of Theorem 1.5 in Chapter 1 as well as

Problem 5 in Assignment 3.

3. Let
∑∞
−∞ cne

inx be the Fourier series of the real-valued function f over [−π, π].

(a) (10 points) For an integrable function f on [−π, π], show that

2π
∞∑
−∞

|cn|2 ≤
∫ π

−π
|f |2 .



(b) (10 points) Show that the equality sign in (a) holds when f is a continuous

2π-periodic function which is piecewise C1.

Solution. (b) In view of (a) it suffices to show the inequality from the other

direction holds. Since the given function is 2π-periodic, continuous, and piecewise

C1, its Fourier series converges uniformly to itself. Given ε > 0, there is some N

such that

|f(x)−
N∑

k=−N

cke
ikx| < ε ,

for all x ∈ [−π, π] . We have

0 ≤
∫ π

−π
f 2(x) dx− 2π

N∑
k=−N

|ck|2

=

∫ π

−π
(f(x)−

N∑
−N

cke
ikx)(f(x)−

N∑
−N

ckeikx) dx

≤ 2πε2 .

Therefore, ∫ π

−π
f 2(x) dx ≤ 2π

N∑
−N

|ck|2 + 2πε2

≤ 2π
∞∑
−∞

|ck|2 + 2πε2 .

The desired result comes by letting ε→ 0.

Note. The key point is the uniform convergence of the Fourier series to the func-

tion itself.

4. (a) (10 points) Show that the set {f ∈ C[a, b] : f(x) > 0, ∀x ∈ [a, b]} is an open

set under the supnorm.



(b) (10 points) Consider P , the set of all polynomials restricted on [a, b]. Deter-

mine the closure and the interior of P in C[a, b] under the supnorm.

Solution. (b) The closure of P is C[a, b]. For, by Weierstrass Approximation

Theorem, for any f ∈ C[a, b], given ε > 0, there is a polynomial p such that

‖f − p‖∞ < ε. On the other hand, P has empty interior. For, consider the

ball Br(p) where p is a polynomial and r is any positive number, the function

f = p + εex , ε > 0, which is not a polynomial, would belong to Br(p) for all

sufficiently small ε.

5. (a) (10 points) Let E be a non-empty set in the metric space (X, d). Show that

the function dE(x) = inf{d(x, y) : y ∈ E} is continuous in (X, d).

(b) (10 points) Take X to be Rn under the Euclidean metric. Show that the only

sets which are open and closed are the empty set and Rn itself. Suggestion:

Let E be a non-empty, open and closed set which is not Rn, and draw a

contradiction by considering dE.

Solution. (b) Let E be a closed and open proper, non-empty subset of

Rn. We will draw a contradiction assuming such set exists. First of all,

pick a point lying outside E and consider the function dE(x0), the distance

from x0 to E. Since Rn \ E is open, dE(x0) > 0. On the other hand, let

{xn} ⊂ E, |xn − x0| → dE(x0) as n → ∞. From |xn| ≤ |x0| + dE(x0) we see

that {xn} is a bounded sequence, so it contains a convergent subsequence.

By passing to a subsequence, we may assume xn → z as n → ∞. Then

dE(x0) = limn→∞ |xn−x0| = |x0− z|, that is, z realizing the distance from x0

to E. As E is closed z ∈ E. As E is open, we can find a ball Br(z) ⊂ E for

some small r > 0. It is now clear that we can find some point w ∈ Br(z) such

that |w−x0| < |z−x0| = dE(x0), contradicting the definition of z. (Note that

in the last step, one may take x0 = (0, 0, · · · , 0) and z = (a, 0, · · · , 0), a > 0.

Then w can be taken to be (a− r/2, 0, · · · , 0).)


